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Luttinger's contributions abound in different parts of many-body physics. Here
I review the ones that appear when one uses the Renormalization Group (RG)
to study the subject: the Luttinger Liquid, Luttinger's Theorem (on the volume
of the Fermi surface) and the Kohn�Luttinger Theorem on the superconducting
instability of all metals as one approaches absolute zero.
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1. INTRODUCTION

As someone who entered condensed matter physics at a ripe old age, my
exposure to it has been rather unconventional, guided more by my research
interests than by a standard curriculum. In this process I noticed that the
name Luttinger kept cropping up all over the place. Here I discuss the
instances that arose in my attempts to apply the Renormalization Group
(RG) to understanding many-body physics. What follows is a rather per-
sonal view of these topics, as compared to an objective review. Given the
context, this seems reasonable.

It is amusing that the RG leads to many of these results since
Luttinger's methods were quite different and could be summarized as
follows:

v Master field theoretic methods as applied to many-body physics.

v Attack the problem frontally and try to demolish it.
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The RG approach is roughly as follows:

v Set up the problem as a multiple (path) integral.

v Keep chipping away at the integrals, saving the most difficult
(singular) part for last, with no intention of doing it.

I met Luttinger only once, following a colloquium I gave on these
topics. It was a brief encounter of the first kind, i.e., I did not get time to
find out in depth his reaction to these alternative approaches. My own view
is this. While it is very satisfying to be able to recast the results of Luttinger
or Landau in RG language (which makes them easy for some of us to
understand and extend), each time that happens, my respect for the
original inventor of these ideas only increases, for I ask: ``How did he do
it without any of this machinery to help him?'' I am therefore honored to
contribute these personal remarks in a volume dedicated to this remarkable
physicist.

2. THE RG APPROACH

About a decade ago, when I got into the business, high Tc materials
had been discovered and Anderson had challenged the community to find
an alternative to Landau's Fermi liquid theory. In one dimension, there
was a concrete case of a non-Fermi liquid, which had been dubbed the
Luttinger liquid by Haldane.(1) I will return to this topic shortly, but must
add that the model was posed by Luttinger(2) and correctly solved by
Mattis and Lieb, (3) and is isomorphic to the massless Thirring model in
quantum field theory. The question in high Tc was whether two dimen-
sional fermions behaved more like this case or like the three dimensional
case, where Fermi liquids ruled.

At that time I had already become a great fan of the RG, having seen
its awesome power in the realm of critical phenomena. I wanted to apply
it to the two-dimensional Fermi system to determine it fate. The basic idea
was simple. First the free system in the low energy region, which for
fermions is near the Fermi surface, would be cast in the form of a functional
integral, and an RG that left its action fixed would be determined. Then,
all interactions would be viewed as perturbations of this fixed point and
classified as relevant, irrelevant and marginal. Only the relevant and
marginal ones could possibly destabilize the Fermi liquid. I published my
preliminary findings in 1991 in an issue of Physica devoted to Michael
Fisher's sixtieth birthday(4) (since I felt this was exactly the kind of stuff
Michael would enjoy) and followed it with a very detailed RMP article in
1994.(5) I became aware that Benfatto and Gallvotti(6) and Feldman and
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Trubowitz(7) had published results on this topic. Their approach was a lot
more formal than I was accustomed to. I have given some additional
references to subsequent work along these lines in ref. 6 (After the above
mentioned work of Mattis and Lieb I had developed a healthy respect for
doing things carefully and realized that sometimes the correct physics
emerges only when one understands the mathematics, in this example,
unitarily inequivalent representations, correctly. In the present case how-
ever, I am confident my approach has the right physics.) Polchinski, (8) who
was interested in effective field theories for particle physics, independently
arrived at the central idea in a somewhat more schematic description in
1992. Anderson had mentioned this approach in his book.(9)

I decided I would start with d=1 as a warm up to see how well the
method did. Let us begin with the fact that in d=1, free spinless fermions
hopping on a lattice are described by the following hamiltonian in momen-
tum spaces:

H0 =|
?

&?

dK
2?

�-(K ) �(K ) E(K ) (1)

E(K )=&cos K (2)

where

[�(K ), �-(K$)]=2?$(K&K$) (3)

The Fermi sea is obtained by filling all negative energy states, i.e., those
with |K |�KF=?�2, which corresponds to half-filling, the case I will
specialize on here. The Fermi surface consists of just two points |K |=\?�2.
It is clear that the ground state is a perfect conductor since we can move
a particle just below the Fermi surface to just above it at arbitrarily small
energy cost.

Now we argue that at weak coupling, only modes near \KF will be
activated. Thus we will linearize the dispersion relation E(K )=&cos K
near these points and work with a cut-off 4:

H0=:
i
|

4

&4

dk
2?

�-
i (k) �i (k) k (4)

where

k=|K |&KF (5)

i=L, R (left or right) (6)
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Next we will write down a T=0 partition function for the noninter-
acting fermions. This will be a Grassmann integral only over the degrees of
freedom within a cut-off 4 of the Fermi surface. We will then find an RG
transformation that lowers the cut-off but leaves the free-field action, S0 ,
invariant. With the RG well defined, we will look at the generic perturba-
tions of this fixed point and classify them as usual. If no relevant operators
show up, we will still have a scale-invariant gapless system. If, on the other
hand, there are generic relevant perturbations, we will have to see to which
new fixed point the system flows. (The new one could also be gapless.) The
stability analysis can be done perturbatively. In particular, if a relevant
perturbation takes us away from the original fixed point, nothing at higher
orders can ever bring us back to this fixed point.

Let us then begin with the partition function for our system of
fermions:

Z0 =| `
i=L, R

`
|k|<4

d�i (|k) d�� i (|k) eS0 (7)

S0= :
i=L, R

|
4

&4

dk
2? |

�

&�

d|
2?

�� i (|k)(i|&k) �i (|k) (8)

This is just a product of functional integrals for the Fermi oscillators
at each momentum with frequency 00(k)=k.

The first step in the RG transformation is to integrate out all �(k|)
and �� (k|) with

4�s�|k|�4 (9)

and all |. Thus our phase space has the shape of a rectangle, infinite in the
| direction, but finite in the k direction. (Consult Fig. 1 for details.) This
shape will be preserved under the RG transformation. Since there is no real
relativistic invariance here, we will make no attempt to treat | and k on

Fig. 1. The figure shows the regions of momentum space being integrated out in the d=1
spinless fermion problem. The thick lines stand for the slices of width d4. They lie a distance
4 from the Fermi points L and R. In the ZS graph which has zero momentum transfer, both
lines lie on the same slice and the |-integral gives zero. In the ZS$ graph, the momentum
transfer ?, connects a and c (which have opposite energies) and b and d similarly related. In
the BCS diagram the loop momenta are equal and opposite and correspond to a, d or b, c.
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an equal footing. Allowing | to take all values allows us to extract an effec-
tive hamiltonian operator at any stage in the RG since locality in time is
assured.

Since the integral is gaussian, the result of integrating out fast modes
is just a numerical prefactor which we throw out. The surviving modes now
have their momenta going from &4�s to 4�s. To make this action a fixed
point we define rescaled variables:

k$=sk

|$=s| (10)

�$i (k$|$)=s&3�2� i (i|)

Ignoring a constant that comes from rewriting the measure in terms of
the new fields, we see that S0 is invariant under the mode elimination and
rescaling operations.

We can now consider the effect of perturbations on this fixed point.
Rather than turn on the perturbation corresponding to any particular
interaction (say nearest neighbor), we will perform a more general analysis.
The result for the particular cases will be subsumed by this analysis.

2.1. Quadratic Perturbations

First consider perturbations which are quadratic in the fields. These
must necessarily be of the form

$S2= :
i=L, R

|
4

&4

dk
2? |

�

&�

d|
2?

+(k|) �� i (|k) �i (|k) (11)

assuming symmetry between left and right fermi points.
Since this action separates into slow and fast pieces, the effect of mode

elimination is simply to reduce 4 to 4�s in the integral above. Rescaling
moments and fields, we find

+$(|$, k$, i )=s+(|, k, i ) (12)

We get this factor s as a result of combining a factor s&2 from rewriting the
old momenta and frequencies in terms of the new and a factor s3 which
comes from rewriting the old fields in terms of the new.

Let us expand + in a Taylor series

+(k, |)=+00++10k++01 i|+ } } } ++nmkn(i|)m+ } } } (13)
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The constant piece is a relevant perturbation:

+00 � s+00 (14)

This relevant flow reflects the readjustment of the Fermi sea to a change in
chemical potential. As for the next two terms, they are marginal. When we
consider quartic interactions, it will be seen that mode elimination will
produce relevant and marginal terms of the above form even if they were
not there to begin with just as ,4 theory. The way to deal with all relevant
quadratic terms are discussed in Ref. [5]. The marginal terms will modify
the Fermi velocity and rescale the field. As for higher order terms in Eq. (13),
they are irrelevant under the RG mentioned above.

Note that in order to define the RG, we need to know the location of
the Fermi momentum KF , since we zero-in on the Fermi surface (a pair of
points in this case) as the RG acts. Here again we find a very useful result
due to Luttinger: the Fermi momentum is determined by the number den-
sity and the relation between them is the same as in the free case. This
result can be exploited here if we work with fixed number of particles
rather than a fixed chemical potential. This means that we must determine
the requisite + perturbatively as we go along. In my long article I spell out
the details of this process, but the main point is that in the RG language,
this is the way to fine-tune (the coefficient of ) a relevant operator to zero.
This operator does not produce a gap, but instead moves the Fermi surface
unless we kill it. In the work of Luttinger, (10) Kohn and Luttinger, (11)

Luttinger and Ward(12) this process ensures a nice perturbation series.

2.2. Quartic Perturbations: The RG at Tree Level

We now turn on the quartic interaction whose most general form is

$S4=
1

2! 2! |
K|

�� (4) �� (3) �(2) �(1) u(4, 3, 2, 1) (15)

where

�� (i )=�� (Ki , |i ) etc. (16)

|
K|

=_`
4

i=1
|

?

&?

dKi

2? |
�

&�

d|i

2? &
_[2?$� (K1+K2&K3&K4) 2?$(|1+|2&|3&|4)] (17)

and $� enforces momentum conservation mod 2?, as is appropriate to any
lattice problem. A process where lattice momentum is violated in multiples
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of 2? is called an umklapp process. The delta function containing frequen-
cies enforces time translation invariance. The coupling function u is anti-
symmetric under the exchange of its first or last two arguments among
themselves since that is true of the Grassmann fields that it multiplies. Thus
the coupling u has all the symmetries of the full vertex function 1 with four
external lines.

Let us now return to the general interaction, Eqs. (15)�(17), and
restrict the momenta to lie within 4 of either Fermi point L or R. Using
a notation where L (left Fermi point) and R (right Fermi point) become
discrete a label i=L or R and 1�4 label the frequencies and momenta
(measured from the appropriate Fermi points). Eqs. (15)�(17) become

$S4 =
1

2! 2!
:

i1 i2 i3 i4=L, R
|

4

K|
�� i4

(4) �� i3
(3) �i2

(2) �i1
(1) ui4 i3 i2 i1

(4, 3, 2, 1) (18)

where

|
4

K|
=_|

4

&4

dk1 } } } dk4

(2?)4 |
�

&�

d|1 } } } d|4

(2?)4 & [2?$(|1+|2&|3&|4)]

_[2?$� (=i1
(KF+k1)+=i2

(KF+k2)&=i3
(KF+k3)&=i4

(KF+k4))]

(19)

and

=i=\1 for R, L (20)

Let us now implement the RG transformation with this interaction.
This proceeds exactly as in ,4 theory. Let us recall how it goes. If schemati-
cally

Z=| d,< d,> e&,2
<&,2

>e&u(,<+,>)4
(21)

is the partition function and we are eliminating ,> , the fast modes, the
effective u for ,< has two origins. First, we have a term &u,4

< which is
there to begin with, called the tree level term. Next, there are terms
generated by the ,> integration. These are computed in a cumulant expan-
sion and are given by Feynman diagrams whose internal momenta lie in
the range being eliminated. The loops that contribute to the flow of u begin
at order u2.

Let us first do the order u tree level calculation for the renormalization
of the quartic interaction. This gives us just Eq. (19) with 4 � 4�s. If we
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now rewrite this in terms of new momenta and fields, we get an interaction
with the same kinematical limits as before and we can meaningfully read off
the coefficient of the quartic-Fermi operators as the new coupling function.
We find

u$i4 i3 i2 i1
(k$i , |$i )=u i4 i3 i2 i1

(k$i �s, |$i �s) (22)

The reader who carries out the intermediate manipulations will notice
an important fact: KF never enters any of the $ functions: either all KF 's
cancel in the nonumklapp cases, or get swallowed up in multiples of 2?
(in inverse lattice units) in the umklapp cases due to the periodicity of the
$� -function. As a result the momentum $ functions are free of KF and scale
very nicely under the RG transformation:

$� (k) � $� (k$�s) (23)

= s$� (k$) (24)

Turning now to Eq. (22), if we expand u in a Taylor series in its arguments
and compare coefficients, we find readily that the constant term u0 is
marginal and the higher coefficients are irrelevant. Thus u depends only on
its discrete labels and we can limit the problem to just a few coupling
constants instead of the coupling function we started with. Furthermore, all
reduce to just one coupling:

u0=uLRLR=uRLRL=&uRLLR=&uLRRL (25)

Other couplings corresponding to LL � RR are wiped out by the Pauli
principle since they have no momentum dependence and can't have the
desired antisymmetry.

The tree level analysis readily extends to couplings with six or more
fields. All these are irrelevant, even if we limit ourselves to constant (| and
k independent) couplings.

In summary, the RG tells us that the most general low energy theory
for spinless fermions in d=1 has, at tree level, a single marginal coupling
constant.

To determine the ultimate fate of the coupling u0 , marginal at tree
level, we must turn to the one loop RG effects.

2.3. RG at One Loop: The Luttinger Liquid

Let us begin with the action with the quartic interaction and do a
mode elimination. Consult Fig. 1 for details. To order u, this leads to an
induced quadratic term represented by the tadpole graph in Fig. 2. We set
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Fig. 2. The tadpole graph which renormalizes the fermion at one loop. It has no dependence
on k, the deviation of the external momentum from KF or |. We have used this freedom to
set both these to zero on the external legs. The effect of this graph may be neutralized by a
counter-term corresponding to a change in chemical potential. One may do this if one wants
to preserve KF .

|=k=0 for the external legs (since the dependence on these is irrelevant)
and have chosen them to lie at L, the left Fermi point. The integral given
by the diagram produces a momentum independent term of the form
$+ �� L�L . But we began with no such term. Thus we do not have a fixed
point in this case. Instead we must begin with some term $+* �� L�L such
that upon renormalization it reproduces itself. We find it by demanding
that

$+*=s _$+*&u0* |
�

&�

d|
2? |

4�s<|k| <4

dk
2?

ei|0+ 1
i|&k& (26)

where we have used the zeroth order propagator and the fact that to this
order any u0=u0*. The exponential convergence factor is the one always
introduced to get the right answer for, say, the ground state particle density
using (�� �). Doing the | integral, we get

$+*=s _$+*&u0* |
4�s<|k| <4

dk
2?

%(&k)& (27)

=s _$+*&
4u0*
2?

(1&1�s)& (28)

It is evident that the fixed point is given by

$+*=
4u0*
2?

(29)
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Alternatively, we could just as well begin with the following relation
for the renormalized coupling

$+$=s _$+&u0* |
�

&�

d|
2? |

4�s<|k|<4

dk
2?

e i|0+ 1
i|&k& (30)

which implies the flow

d+
dt

=+&
u0*
2?

(31)

assuming we choose to measure + in units of 4. The fixed point of this
equation reproduces Eq. (29).

We can find $+* in yet another way with no reference to the RG. If
we calculate the inverse propagator in the cut-off theory to order u, we will
find

G&1=i|&k&
4u0

2?
(32)

indicating that the Fermi point is no longer given by k=0. To reinstate the
old KF as interactions are turned on, we must move the chemical potential
away from zero and to the value $+=4u0 �2?. Thus the correct action that
gives us the desired KF , for this coupling, to this order, is then schemati-
cally given by

S=�� (i|&k) �+
4u0

2?
�� �+

u0

2! 2!
���� (33)

An RG transformation on this action would not generate the tadpole graph
contribution.

A very important point which will appear again is this: we must fine tune
the chemical potential as a function of u, not to maintain criticality (as one
does in ,4 where the bare mass is varied with the interaction to keep the
system massless) but to retain the same particle density. (To be precise, we
are keeping fixed KF , the momentum at which the one-particle Greens
function has its singularity. This amounts to keeping the density fixed,
following Luttinger (1960).) If we kept + at the old value of zero, the
system would flow away from the fixed point with KF=?�2, not to a state
with a gap, but to another gapless one with a smaller value of KF . This
simply corresponds to the fact if the total energy of the lowest energy par-
ticle that can be added to the system, namely +, is to equal 0, the kinetic
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energy at the Fermi surface must be slightly negative so that the repulsive
potential energy with the others in the sea brings the total to zero.

Let us now turn our attention to the order u2
0 graphs that renormalize u0 .

These are shown in Fig. 3. The increment in u0 , hereafter simply called u,
is given by the sum of the ZS (zero-sound), ZS$ and BCS graphs. The
analytical formula for the increment in u is

du(4321)=| u(6351) u(4526) G(5) G(6) $(3+6&1&5) d5 d6

&| u(6451) u(3526) G(5) G(6) $(6+4&1&5) d5 d6

& 1
2 | u(6521) u(4365) G(5) G(6) $(5+6&1&2) d5 d6 (34)

where 1 to 4 stand for all the attributes of the (slow) external lines, 5 and
6 stand for all the attributes of the two (fast) internal lines: momenta
(restricted to be within the region being eliminated), and frequencies; G are
the propagators and the $ functions are for ensuring the conservation of
momenta and frequencies and � d5 d6 stands for sums and integrals over
the attributes 5 and 6. (In the figure the momenta 1 to 6 have been
assigned some special values (such as 5=K in Fig. 3a) that are appropriate
to the problem at hand. The formula is very general as it stands and
describes other situations as well.) The couplings u are functions of all these
attributes, with all the requisite antisymmetry properties. (The order in
which the legs are labeled in a is important due to all the minus signs. The
above equations have been written to hold with the indicated order of
arguments. In their present form they are ready to be used by a reader who
wants to include spin.)

This is the master formula we will invoke often. It holds even in higher
dimensions, if we suitably modify the integration region for the momenta.

Readers familiar with Feynman diagrams may obtain this formula by
drawing all the diagrams to this order in the usual Feynman graph expan-
sion, but allowing the loop momenta to range only over the modes being
eliminated. In the present case, these are given by the four thick lines
labeled a, b, c and d in Fig. 1 where each line stands for a region of width
d4 located at the cut-off, i.e., a distance 4 from the Fermi points. The
external momenta are chosen to be (4321)=(LRLR), at the Fermi surface.
All the external k's and |'s are set equal to zero since the marginal coupl-
ing u has no dependence on these. This has two consequences. First, the
loop frequencies in the ZS and ZS$ graphs are equal, while those in the
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BCS graph are equal and opposite. (The labels Zero sound and BCS
describe the topology of these graphs and not literally these phenomena.)
Second, the momentum transfers at the left vertex are Q=K1&K3=0 in
the ZS graph, Q$=K1&K4=? in the ZS$ graph, while the total momen-
tum in the BCS graph is P=K1+K2=0. Therefore if one loop momentum
5=K lies in any of the four shells in Fig. 1, so does the other loop momen-
tum 6 which equals K, K+? or &K in the ZS, ZS$ and BCS graphs respec-
tively. Thus we may safely eliminate the momentum conserving $ function
in Eq. (34) using � d6. This fact, coupled with

E(&K )=E(K ) (35)

E(K$=K\?)=&E(K ) (36)

leads to

du(LRLR)=|
�

&�
|

d4

d| dK
4?2

u(KRKR) u(LKLK )
(i|&E(K ))(i|&E(K ))

&|
�

&�
|

d4

d| dK
4?2

u(K$LKR) u(RKLK$)
(i|&E(K ))(i|+E(K ))

&
1
2 |

�

&�
|

d4

d| dK
4?2

u(&KKLR) u(LR&KK )
(i|&E(K ))(&i|&E(K ))

(37)

#ZS+ZS$+BCS (38)

where �d4 means the momentum must lie in one of the four slices in Fig. 1.
The reader is reminded once again that the names ZS, ZS$ or BCS

refer only to the topologies of the graphs. To underscore this point, espe-
cially for readers who have seen a similar integral in zero sound calcula-
tions, we will now discuss the ZS graph. In the present problem the loop
momentum K lies within a sliver d4 of the cut-off. Both propagators have
poles at the point |=&iE(k=\4). No matter which half-plane this lies
in, we can close the contour the other way and the | integral vanishes.
This would be the case even if a small external momentum transfer
(Q=K3&K1<<4) takes place at the left vertex since both poles would
still be on the same side. This is very different from what happens in zero
sound calculations where the loop momenta roamed freely within the cut-
off, and in particular, go to the Fermi surface. In that case, the integral
becomes very sensitive to how the external momentum transfer Q=K3&K1

and frequency transfer 0=|3&|1 are taken to zero since any nonzero Q,

497Luttinger Revisited



however small, will split the poles and make them lie on different half
planes for k<Q and the integral will be nonzero. It is readily seen that

|
�

&�
|

4

&4

d| dk
4?2

1
(i|&k)(i|&k&Q+i0)

=|
4

&4

dk
2?

i
0+iq

(%(k)&%(k+q)) (39)

where the step function %(k) is simply related to the Fermi function: f (k)=
1&%(k). If we keep 0{0 and send Q to zero we get zero. On the other
hand of we set 0=0 and let Q approach zero we get (minus) the derivative
of the (Fermi) % function, i.e., a $-function at the Fermi surface. Thus
reader used to zero-sound physics should not be disturbed by the fact that
the ZS graph makes no contribution since the connotation here is different.

Now for the ZS$ graph, Fig. 3b, Eq. (37). We see that K must lie near
L since 1=R and there is no RR scattering. As far as the coupling at the
left vertex is concerned, we may set K=L since the marginal coupling has
no k dependence. Thus K+?=R and the vertex becomes u(RLLR)=&u.
So does the coupling at the other vertex. Doing the | integral (which is
now nonzero since the poles are always on opposite half-planes) we obtain,
upon using the fact that there are two shells (a and b in Fig. 1) near L and
that |E(K )|=|k|=|4|,

ZS$=u2 |
d4 # L

dK
4? |E(K )|

=
u2

2?
d |4|

4
(40)

The reader may wish to check that the ZS$ graph will make the same con-
tribution to the ;-function in the field theory approach.

The BCS graph (Eq. (37), Fig. 3c) gives a nonzero contribution since
the propagators have opposite frequencies, opposite momenta, but equal
energies due to time-reversal invariance E(K )=E(&K ). We notice that the
factor of 1

2 is offset by the fact that K can now lie in any of the four regions
a, b, c, or d. We obtain a contribution of the same magnitude but opposite
sign as ZS$ so that

du=\u2

2?
&

u2

2?+
d |4|

4
(41)

dt

du
dt

= ;(u)=0 (42)
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Thus we find that u is still marginal. The flow to one loop for + and
u is

d+
dt

=+&
u

2?
(43)

du
dt

=0 (44)

There is a line of fixed points:

+=
u*
2?

(45)

u*=arbitrary (46)

Notice that ; vanishes due to a cancellation between two diagrams, each
of which by itself would have led to the CDW or BCS instability. When
one does a mean-field calculation for CDW, one focuses on just the ZS$
diagram and ignores the BCS diagram. This amounts to taking

du
dt

=
u2

2?
(47)

which, if correct, would imply that any positive a grows under renormaliza-
tion. If this growth continues we expect a CDW. On the other hand, if just
the BCS diagram is kept we will conclude a run-off for negative couplings
leading to a state with (�R �L) {0.

What the ; function does is to treat these competing instabilities
simultaneously and predict a scale-invariant theory.

Is this the correct prediction for the spinless model? If we consider a
nearest-neighbor interaction of strength u, the exact solution of Yang and
Yang (1976) (13) tells us there is no gap till u is of order unity. If the RG
analysis were extended to higher loops we would keep getting ;=0 to all
orders. This follows from the Ward identity in the cut-off continuum model
(Di Castro and Metzner(14)) which reflects the fact that in this model, the
number of fermions of type L and R are separately conserved. The vanish-
ing beta function also agrees with the original finding of Solyom.(15)

This model also coincides with the massless Thirring model, which is
a Lorentz invariant theory with a current-current interaction. The reason
is that using L or R fields and their adjoints, there is just one possible quartic
interaction. As for Lorentz invariance, it was assured when we linearized
the spectrum near the Fermi points.
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This scale-invariant system is called the Luttinger liquid. The system
has a Fermi surface at which the occupation number has a kink in slope,
but no jump in value. The Fermionic Green's functions fall with anomalous
powers that vary with the coupling u. The quasi-particle is totally gone, no
matter how small the interaction. Under bosonization, the model maps
into a free bosons. The complicated fermionic behavior is encoded in the
expressions for the fermions operators in the bosonic language. If spin is
included, we get two bosons, moving at different velocities, a phenomenon
called spin-charge separation.

How do we ever reproduce the eventual charge density wave insta-
bility known to exist in the exact solution of the model with nearest
neighbor interactions? The answer is as follows. As we move along the line
of fixed points, labeled by u, the dimension of various operators will change
from the free-field values. Ultimately the umklapp coupling, (RR W LL),
which was suppressed by a factor (k1&k2)(k3&k4), will become marginal
and then relevant, as shown by Haldane.(1) If we were not at half-filling
such a term would be ruled out by momentum conservation and the scale
invariant Luttinger liquid would persist for all u. While this liquid provides
us with an example of where the RG does better than mean-field theory,
it is rather special and seems to occur in d=1 systems where the two Fermi
points satisfy the conditions for both CDW and BCS instabilities. In higher
dimensions one finds that any instability due to a divergent susceptibility
is never precisely cancelled by another.

3. HIGHER DIMENSIONS

The extension of these methods to higher dimensions is discussed in
the RMP article and this discussion will be limited to the part that makes
contact with Luttinger's work.

In d=2 dimensions, I considered Fermi surfaces of arbitrary shape. In
the circular case, to which I limit myself here, I found that if one took an
annulus of thickness 24 concentric with the Fermi circle, and let 4 � 0,
RG yielded two marginal coupling functions, F(%) and V(%), see Fig. 4. (As
in d=1, the chemical potential had to be fine tuned to keep KF fixed.) The
function F described forward scattering and was shown to be Landau's F
function. It remained marginal to all orders in the loop expansion. (I pointed
out that 4�KF played the role of the small parameter 1�N which made such
statements possible.) The function V(%), which described scattering
between Cooper pairs, evolved as follows:

dVm

dt
=&cmV 2

m (48)
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Fig. 4. (a) The quartic coupling. A label like 1 stands for three things: an angle %1 on the
Fermi surface, a frequency |1 and a momentum K&KF#k, both equal to 0 since the
dependence on these two is irrelevant. (b) The low energy region that survives under RG in
d=2. The bandwidth 24 has become as small as the thickness of the circular line. Note that
if the two incoming momenta lie on this circle, the outgoing momenta must equal them:
%1=%3 and %2=%4 (or the exchanged version). The angle %1&%2=% is the argument of
Landau's F function. An exception arises if %1=&%2 , in which case %3=&%4 and the angle
between these two opposing lines is the argument of the Copper amplitude V.

where Vm was the m th Fourier coefficient (angular momentum m channel
of Cooper pairs). This meant that any positive Vm flowed to zero logarith-
mically (an old result of Morel and Anderson(16)) while any attractive Vm

grew in strength leading to the BCS instability. In other words, the Fermi
liquid had an infinite number of unstable directions, and attraction in any
angular momentum channel between Cooper pairs spelled its end.

We relate the last statement with the result of Kohn�Luttinger(17) that
any Fermi system will end up superconducting as follows. The couplings
Vm are not the bare couplings, say of a Hubbard or continuum model.
They are the result of integrating out all modes outside the cut-off, say,
using in perturbation theory. The Kohn�Luttinger result amounts to the
statement that if one does this, some Vm or other will surely be negative.
To see this, one need look at only the diagrams considered by Kohn�
Luttinger. The fact that the loop momenta lie outside the cut-off in the RG
approach do not change the conclusion that an attractive coupling will be
generated from repulsive ones, as shown in my review.

4. CONCLUSIONS

I have focused here on the results of Luttinger's work that arose
naturally when I used the RG as a tool to study many-body fermionic
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systems. I discussed a special d=1 system in which superconductivity and
CDW instability duke it out and neither wins, leaving behind a scale
invariant system, the Luttinger liquid. It is not possible to get such a
system in d>1 without invoking more singular interactions than the
coulomb or strong coupling. I showed that in order to zero-in on the low
energy sector for fermions, namely the Fermi surface, one needs to know
where it lies and here the results of Luttinger, Kohn and Ward reappear.
Finally I showed that the Kohn�Luttinger result, of the inevitable super-
conducting instability, appears here as the statement that by the time we
eliminate modes outside the cut-off and get to the physics near the Fermi
surface, some Cooper coupling will surely become negative, at which point
the RG takes over and predicts it will grow.
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